EconPapers    
Economics at your fingertips  
 

Impacting Big Data analytics in higher education through Six Sigma techniques

Chad Laux, Na Li, Corey Seliger and John Springer

International Journal of Productivity and Performance Management, 2017, vol. 66, issue 5, 662-679

Abstract: Purpose - The purpose of this paper is to develop a framework for utilizing Six Sigma (SS) principles and Big Data analytics at a US public university for the improvement of student success. This research utilizes findings from the Gallup index to identify performance factors of higher education. The goal is to offer a reimagined SS DMAIC methodology that incorporates Big Data principles. Design/methodology/approach - The authors utilize a conceptual research design methodology based upon theory building consisting of discovery, description, explanation of the disciplines of SS and Big Data. Findings - The authors have found that the interdisciplinary approach to SS and Big Data may be grounded in a framework that reimagines the define, measure, analyze, improve and control (DMAIC) methodology that incorporates Big Data principles. The authors offer propositions of SS DMAIC to be theory tested in subsequent study and offer the practitioner managing the performance of higher education institutions (HEIs) indicators and examples for managing the student success mission of the organization. Research limitations/implications - The study is limited to conceptual research design with regard to the SS and Big Data interdisciplinary research. For performance management, this study is limited to HEIs and non-FERPA student data. Implications of this study include a detailed framework for conducting SS Big Data projects. Practical implications - Devising a more effective management approach for higher education needs to be based upon student success and performance indicators that accurately measure and support the higher education mission. A proactive approach should utilize the data rich environment being generated. The individual that is most successful in engaging and managing this effort will have the knowledge and skills that are found in both SS and Big Data. Social implications - HEIs have historically been significant contributors to the development of meritocracy in democratic societies. Due to a variety of factors, HEIs, especially publicly funded institutions, have been under stress due to a reduction of public funding, resulting in more limited access to the public in which they serve. Originality/value - This paper examines Big Data and SS in interdisciplinary effort, an important contribution to SS but lacking a conceptual foundation in the literature. Higher education, as an industry, lacks penetration and adoption of continuous improvement efforts, despite being under tremendous cost pressures and ripe for disruption.

Keywords: Big Data; Six Sigma; DMAIC; Information technology; Education (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:ijppmp:ijppm-09-2016-0194

DOI: 10.1108/IJPPM-09-2016-0194

Access Statistics for this article

International Journal of Productivity and Performance Management is currently edited by Dr Luisa Huatuco and Dr Nicky Shaw

More articles in International Journal of Productivity and Performance Management from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:ijppmp:ijppm-09-2016-0194