EconPapers    
Economics at your fingertips  
 

Predicting complaint voicing or exit amidst Indian consumers: a CHAID analysis

Amit Kumar and Anupriya Kaur

Journal of Advances in Management Research, 2022, vol. 20, issue 1, 55-78

Abstract: Purpose - The current study aims to predict consumer complaint status (complainers or non-complainers) based on socio-demographic and psychographic factors and further to discern the differences in behavior disposition of consumer groups concerning determinants of consumer's tendency to exit (TE). Design/methodology/approach - The research used survey-based data of 600 Indian consumers of three service sectors (hotel and hospitality, automobile service centers and organized retail stores). Chi-square automatic interaction detector (CHAID) decision tree analysis was used to profile consumers. Findings - The results indicated that occupation; income; education; industry and attitude toward complaining were significant factors in profiling consumers as complainers or non-complainers. Further, determinants of TE (discouraging subjective norms, perceived likelihood of successful complaint, lower perceived switching cost, poor employee response, negative past experience and ease of complaint process) vary significantly across the groups of complainers and non-complainers. Research limitations/implications - The research questions in this study were tested with three service sectors consumers in India, so due care should be exercised in generalizing these findings to other sectors and countries. Study replication across other service sectors and countries is recommended to improve the generalizability of these findings with wider socio-demographic samples. Practical implications - Firms striving for consumer retention and aim to extend their consumer life cycle can greatly benefit from the results of this study to understand the customer complaint behavior (CCB) specific to non-complaining (exit) behavior. The future researcher may benefit from replicating and extending the model in different industries for further contribution to the CCB literature. Originality/value - To the best of the author's knowledge, there is no evidence of consumer segmentation based on their complaining behavior or socio-demographic and psychographic factors by employing CHAID decision tree analysis. In addition to illustrating the use of data mining techniques such as CHAID in the field of CCB, it also contributes to the extant literature by researching in a non-Western setting like India.

Keywords: Complaint; Customer complaint behaviour (CCB); Complainer; Non-complainer; CHAID (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:jamrpp:jamr-03-2022-0054

DOI: 10.1108/JAMR-03-2022-0054

Access Statistics for this article

Journal of Advances in Management Research is currently edited by Prof Ravi Shankar and Prof Surendra Yadav

More articles in Journal of Advances in Management Research from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-05-31
Handle: RePEc:eme:jamrpp:jamr-03-2022-0054