EconPapers    
Economics at your fingertips  
 

Pharmaceutical consumption, economic growth and life expectancy in the OECD: the application of a new causal direction from dependency algorithm and a DeepNet process

Cosimo Magazzino (), Monica Auteri, Nicolas Schneider, Ferdinando Ofria and Marco Mele

Journal of Economic Studies, 2024, vol. 51, issue 9, 249-271

Abstract: Purpose - The objective of this study is to reevaluate the correlation among pharmaceutical consumption, per capita income, and life expectancy across different age groups (at birth, middle age, and advanced age) within the OECD countries between 1998 and 2018. Design/methodology/approach - We employ a two-step methodology, utilizing two independent approaches. Firstly, we con-duct the Dumitrescu-Hurlin pairwise panel causality test, followed by Machine Learning (ML) experiments employing the Causal Direction from Dependency (D2C) Prediction algorithm and a DeepNet process, thought to deliver robust inferences with respect to the nature, sign, direction, and significance of the causal relationships revealed in the econometric procedure. Findings - Our findings reveal a two-way positive bidirectional causal relationship between GDP and total pharmaceutical sales per capita. This contradicts the conventional notion that health expenditures decrease with economic development due to general health improvements. Furthermore, we observe that GDP per capita positively correlates with life expectancy at birth, 40, and 60, consistently generating positive and statistically significant predictive values. Nonetheless, the value generated by the input life expectancy at 60 on the target income per capita is negative (−61.89%), shedding light on the asymmetric and nonlinear nature of this nexus. Finally, pharmaceutical sales per capita improve life expectancy at birth, 40, and 60, with higher magnitudes compared to those generated by the income input. Practical implications - These results offer valuable insights into the intricate dynamics between economic development, pharmaceutical consumption, and life expectancy, providing important implications for health policy formulation. Originality/value - Very few studies shed light on the nature and the direction of the causal relationships that operate among these indicators. Exiting from the standard procedures of cross-country regressions and panel estimations, the present manuscript strives to promote the relevance of using causality tests and Machine Learning (ML) methods on this topic. Therefore, this paper seeks to contribute to the literature in three important ways. First, this is the first study analyzing the long-run interactions among pharmaceutical consumption, per capita income, and life expectancy for the Organization for Economic Co-operation and Development (OECD) area. Second, this research contrasts with previous ones as it employs a complete causality testing framework able to depict causality flows among multiple variables (Dumitrescu-Hurlin causality tests). Third, this study displays a last competitive edge as the panel data procedures are complemented with an advanced data testing method derived from AI. Indeed, using an ML experiment (i.e. Causal Direction from Dependency, D2C and algorithm) it is believed to deliver robust inferences regarding the nature and the direction of the causality. All in all, the present paper is believed to represent a fruitful methodological research orientation. Coupled with accurate data, this seeks to complement the literature with novel evidence and inclusive knowledge on this topic. Finally, to bring accurate results, data cover the most recent and available period for 22 OECD countries: from 1998 to 2018.

Keywords: Pharmaceutical consumption; Economic growth; Life expectancy; Causality; Machine learning; OECD; C33; H51; O47 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:jespps:jes-02-2024-0066

DOI: 10.1108/JES-02-2024-0066

Access Statistics for this article

Journal of Economic Studies is currently edited by Prof Mohsen Bahmani-Oskooee

More articles in Journal of Economic Studies from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-22
Handle: RePEc:eme:jespps:jes-02-2024-0066