Value‐at‐risk
Lindsay A. Lechner and
Timothy C. Ovaert
Journal of Risk Finance, 2010, vol. 11, issue 5, 464-480
Abstract:
Purpose - The last few years in the financial markets have shown great instability and high volatility. In order to capture the amount of risk a financial firm takes on in a single trading day, risk managers use a technology known as value‐at‐risk (VaR). There are many methodologies available to calculate VaR, and each has its limitations. Many past methods have included a normality assumption, which can often produce misleading figures as most financial returns are characterized by skewness (asymmetry) and leptokurtosis (fat‐tails). The purpose of this paper is to provide an overview of VaR and describe some of the most recent computational approaches. Design/methodology/approach - This paper compares the Student‐t, autoregressive conditional heteroskedastic (ARCH) family of models, and extreme value theory (EVT) as a means of capturing the fat‐tailed nature of a returns distribution. Findings - Recent research has utilized the third and fourth moments to estimate the shape index parameter of the tail. Other approaches, such as extreme value theory, focus on the extreme values to calculate the tail ends of a distribution. By highlighting benefits and limitations of the Student‐t, autoregressive conditional heteroskedastic (ARCH) family of models, and the extreme value theory, one can see that there is no one particular model that is best for computing VaR (although all of the models have proven to capture the fat‐tailed nature better than a normal distribution). Originality/value - This paper details the basic advantages, disadvantages, and mathematics of current parametric methodologies used to assess value‐at‐risk (VaR), since accurate VaR measures reduce a firm's capital requirement and reassure creditors and investors of the firm's risk level.
Keywords: Skewness; Value analysis; Probability calculations; Stock prices; Returns (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:jrfpps:15265941011092059
DOI: 10.1108/15265941011092059
Access Statistics for this article
Journal of Risk Finance is currently edited by Nawazish Mirza
More articles in Journal of Risk Finance from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().