EconPapers    
Economics at your fingertips  
 

Forecasting multivariate VaR and ES using MC-GARCH-Copula model

Hemant Kumar Badaye and Jason Narsoo

Journal of Risk Finance, 2020, vol. 21, issue 5, 493-516

Abstract: Purpose - This study aims to use a novel methodology to investigate the performance of several multivariate value at risk (VaR) and expected shortfall (ES) models implemented to assess the risk of an equally weighted portfolio consisting of high-frequency (1-min) observations for five foreign currencies, namely, EUR/USD, GBP/USD, EUR/JPY, USD/JPY and GBP/JPY. Design/methodology/approach - By applying the multiplicative component generalised autoregressive conditional heteroskedasticity (MC-GARCH) model on each return series and by modelling the dependence structure using copulas, the 95 per cent intraday portfolio VaR and ES are forecasted for an out-of-sample set using Monte Carlo simulation. Findings - In terms of VaR forecasting performance, the backtesting results indicated that four out of the five models implemented could not be rejected at 5 per cent level of significance. However, when the models were further evaluated for their ES forecasting power, only the Student’stand Clayton models could not be rejected. The fact that some ES models were rejected at 5 per cent significance level highlights the importance of selecting an appropriate copula model for the dependence structure. Originality/value - To the best of the authors’ knowledge, this is the first study to use the MC-GARCH and copula models to forecast, for the next 1 min, the VaR and ES of an equally weighted portfolio of foreign currencies. It is also the first study to analyse the performance of the MC-GARCH model under seven distributional assumptions for the innovation term.

Keywords: Value-at-risk; Model validation; Expected shortfall; High hrequency data; Innovation distribution; MC-GARCH-Copula (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-06-2019-0114

DOI: 10.1108/JRF-06-2019-0114

Access Statistics for this article

Journal of Risk Finance is currently edited by Nawazish Mirza

More articles in Journal of Risk Finance from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:jrfpps:jrf-06-2019-0114