Upper and Lower Bounds of Present Value Distributions of Life Insurance Contracts with Disability Related Benefi ts
Jaap Spreeuw
Review of Business and Economic Literature, 2005, vol. L, issue 1, 115-160
Abstract:
The distribution function of the present value of a cash fl ow can be approximated by means of a distribution function of a random variable, which is also the present value of a sequence of payments, but has a simpler structure. The corresponding random variable has the same expectation as the random variable corresponding to the original distribution function and is a stochastic upper bound of convex order. A sharper upper bound and a nontrivial lower bound can be obtained if more information about the risk is available. In this paper, it will be shown that such an approach can be adopted for some life insurance contracts under Markov assumptions, with disability related benefi ts. The quality of the approximation will be investigated by comparing the distribution obtained with the one derived from the algorithm presented in the paper by Hesselager and Norberg (1996).
Keywords: Convex order; comonotonic joint distribution; multistate life insurance contracts; present value distributions (search for similar items in EconPapers)
JEL-codes: C65 (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations:
Downloads: (external link)
http://feb.kuleuven.be/rebel/jaargangen/2001-2010/ ... 005-1_11_Spreeuw.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ete:revbec:20050110
Access Statistics for this article
More articles in Review of Business and Economic Literature from KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature Contact information at EDIRC.
Bibliographic data for series maintained by library EBIB ().