CREDIT CARD APPLICATION ASSESSMENT USING A NEURO-FUZZY CLASSIFICATION SYSTEM
E. Kitsios,
M. Doumpos and
C. Zopounidis
Additional contact information
C. Zopounidis: Technical University of Crete
Fuzzy Economic Review, 2006, vol. XI, issue 1, 3–26
Abstract:
Credit cards constitute one of the most common forms of consumer loans. The main purpose of this paper is to apply fuzzy data analysis to the credit scoring problem. A neuro-fuzzy classification technique is compared to the logistic regression approach and novel machine learning algorithms that are currently being investigated as credit scoring methods. The 10-fold cross-validation procedure is performed to analyze the generalization properties and the robustness of the developed models. Neuro-fuzzy classification systems allow for prior knowledge to be imbedded in the analysis and utilize human expertise in the form of fuzzy if then rules to provide an insight into the reasoning mechanism behind the credit approval/rejection decision. This feature is particularly useful in financial applications such as credit granting, where credit analysts should be in a position to provide an explanation for their decisions.
Keywords: credit scoring; neuro-fuzzy systems; classification (search for similar items in EconPapers)
JEL-codes: G17 (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fzy:fuzeco:v:xi:y:2006:i:1:p:3-26
Access Statistics for this article
More articles in Fuzzy Economic Review from International Association for Fuzzy-set Management and Economy (SIGEF) Contact information at EDIRC.
Bibliographic data for series maintained by Aurelio Fernandez ( this e-mail address is bad, please contact ).