Chemical Composition Variations of Altered and Unaffected Coals from the Huaibei Coalfield, China: Implications for Maturity
Songbao Feng,
Qiang Wei and
Xianqing Li
Additional contact information
Songbao Feng: School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, China
Qiang Wei: School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, China
Xianqing Li: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
Energies, 2021, vol. 14, issue 11, 1-17
Abstract:
The composition characteristics of altered coals in the Huaibei Coalfield, China, was investigated through a comparative analysis between altered and unaffected coals from the Wolonghu, Taoyuan and Renlou coal mines. Results indicated that the altered coals in Wolonghu coal mine are mostly anthracite coals, with a maximum vitrinite reflectance of 1.6–3.9% (average of 2.9%). Coals from Wolonghu coal mine were mainly consisted of vitrinite (66.2–97.0%), followed by inertinite (2.0–4.0%) and exinite (0.4–6.9%). Differences in volatile matter content were observed between the altered coals in Wolonghu coal mine and unaffected coals from neighboring coal mines, implying that the chemical composition and maturity of coals were changed after magmatic alteration. In addition, differences in hydrogen element were noted among the coals from Wolonghu, Renlou and Taoyuan coal mines, and the phenomenon of “deficient in hydrogen element” was observed in Wolonghu coals. The aliphatic hydrocarbon structure parameters suggested that the aliphatic chain lengths of Wolonghu coals are shorter than those of coal samples from the Renlou and Taoyuan coal mines. In addition, maturity is positively correlated with hydrogen enrichment degree, but negatively related with aliphatic hydrocarbon structure. Coals from Renlou and Taoyuan coal mines showed great weight loss with various heating rates at temperatures of 0–1000 °C, whereas those from Wolonghu coal mine had less weight loss.
Keywords: chemical composition; structure of organic matter; altered coal; Wolonghu coal mine; Huaibei Coalfield (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3028/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3028/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3028-:d:560895
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().