Improving Energy Efficiency on SDN Control-Plane Using Multi-Core Controllers
Tadeu F. Oliveira,
Samuel Xavier- de-Souza and
Luiz F. Silveira
Additional contact information
Tadeu F. Oliveira: Federal Institute of Education, Science, and Technology of Rio Grande do Norte, Parnamirim, Rua Antonia de Lima Paiva, 155 Bairro Nova Esperanca, Parnamirim 59143-455, Brazil
Samuel Xavier- de-Souza: Computer Engineering and Automation Department, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
Luiz F. Silveira: Computer Engineering and Automation Department, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
Energies, 2021, vol. 14, issue 11, 1-20
Abstract:
Software-defined networks have become more common in data centers. The programmability of these networks is a great feature that allows innovation to be deployed fast, following the increasing number of new applications. This growth comes with a cost of more processing power and energy consumption. Many researchers have tackled this issue using existing routing techniques to dynamically adjust the network forwarding plane to save energy. On the control-plane, researchers have found algorithms for positioning the controller in a way to reduce the number of used links, thus reducing energy. These strategies reduce energy consumption at the expense of processing power of the controllers. This paper proposes a novel approach to energy efficiency focused on the network’s control-plane, which is complementary to the many already existing data-plane solutions. It takes advantage of the parallel processing capabilities of modern off-the-shelf multicore processors to split the many tasks of the controller among the cores. By dividing the tasks among homogeneous cores, one can lower the frequency of operations, lowering the overall energy consumption while keeping the same quality of service level. We show that a multicore controller can use an off-the-shelf multicore processor to save energy while keeping the level of service. We performed experiments based on standard network measures, namely latency and throughput, and standard energy efficiency metrics for data centers such as the Communication Network Energy Efficiency (CNEE) metric. Higher energy efficiency is achieved by a parallel implementation of the controller and lowering each core’s frequency of operation. In our experiments, we achieved a drop of 28% on processor energy use for a constant throughput scenario when comparing with the single-core approach.
Keywords: software-defined network; energy efficiency; control-plane; multicore; controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3161/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3161/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3161-:d:564478
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().