EconPapers    
Economics at your fingertips  
 

Heat of Decomposition and Fire Retardant Behavior of Polyimide-Graphene Nanocomposites

Caroline J. Akinyi and Jude O. Iroh
Additional contact information
Caroline J. Akinyi: Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
Jude O. Iroh: Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Energies, 2021, vol. 14, issue 13, 1-12

Abstract: Polyimide is a high-performance engineering polymer with outstanding thermomechanical properties. Because of its inherent fire-retardant properties, polyimide nanocomposite is an excellent material for packaging electronic devices, and it is an attractive electrode material for batteries and supercapacitors. The fire-retardant behavior of polyimide can be remarkably improved when polyimide is reinforced with multilayered graphene sheets. Differential scanning calorimetry and thermogravimetric analysis were used to study the heat of decomposition and gravimetric decomposition rate, respectively, of polyimide-graphene nanocomposites. Polyimide/graphene nanocomposites containing 10, 20, 30, 40, and 50 wt.% of multilayered graphene sheets were heated at a rate of 10 and 30 °C/min in air and in nitrogen atmosphere, respectively. The rate of mass loss was found to remarkably decrease by up to 198% for nanocomposites containing 50 wt.% of graphene. The enthalpy change resulting from the decomposition of the imide ring was found to decrease by 1166% in nitrogen atmosphere, indicating the outstanding heat-shielding properties of multilayered graphene sheets due to their high thermal conductivity. Graphene sheets are believed to form a continuous carbonaceous char layer that protects the imide ring against decomposition, hence decreasing initial mass loss. The enthalpy changes due to combustion, obtained from differential scanning calorimetry, were used to calculate the theoretical heat release rates, a major parameter in the determination of flammability of polymers. The heat release rate decreased by 62% for composites containing 10 wt.% of graphene compared to the neat polyimide matrix. Polyimide has a relatively lower heat of combustion as compared with graphene. However, graphene significantly decreases the mass loss rates of polyimide. The combined interaction of graphene and polyimide led to an overall decrease in the heat release rate. It is noted that both mass loss rate and heat of combustion are important factors that contribute to the rate of heat released.

Keywords: nanocomposites; polyimide; graphene nanosheets; flame-retardant; differential scanning calorimetry; thermogravimetry (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/13/3948/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/13/3948/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:13:p:3948-:d:586809

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3948-:d:586809