Decentralized Optimal Control for Photovoltaic Systems Using Prediction in the Distribution Systems
Chi-Thang Phan-Tan and
Martin Hill
Additional contact information
Chi-Thang Phan-Tan: Electrical and Electronic Department, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
Martin Hill: Electrical and Electronic Department, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
Energies, 2021, vol. 14, issue 13, 1-21
Abstract:
The high penetration of photovoltaic (PV) systems and fast communications networks increase the potential for PV inverters to support the stability and performance of microgrids. PV inverters in the distribution network can work cooperatively and follow centralized and decentralized control commands to optimize energy production while meeting grid code requirements. However, there are older autonomous inverters that have already been installed and will operate in the same network as smart controllable ones. This paper proposes a decentralized optimal control (DOC) that performs multi-objective optimization for a group of PV inverters in a network of existing residential loads and autonomous inverters. The interaction of independent DOC groups in the same network is considered. The limit of PV inverter power factor is included in the control. The DOC is done by the power flow calculation and an autoregression prediction model for estimating maximum power point and loads. Overvoltage caused by prediction errors resulting in non-optimal commands from the DOC is avoided by switching to autonomous droop control (ADC). The DOC and ADC operate at different time scales to take account of communication delays between PV inverters and decentralized controller. The simulation of different scenarios of network control has proved the effectiveness of the control strategies.
Keywords: low-voltage distribution network; overvoltage; photovoltaic; multi-objective optimization; prediction; decentralized control; droop control; microgrid cluster (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/13/3973/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/13/3973/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:13:p:3973-:d:587307
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().