EconPapers    
Economics at your fingertips  
 

Combustion Behavior and Kinetics Analysis of Isothermal Oxidized Oils from Fengcheng Extra-Heavy Oil

Liangliang Wang, Jiexiang Wang, Wanfen Pu and Tengfei Wang
Additional contact information
Liangliang Wang: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Jiexiang Wang: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Wanfen Pu: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
Tengfei Wang: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Energies, 2021, vol. 14, issue 19, 1-17

Abstract: The low-temperature oxidation (LTO) of heavy oil is of great significance for the combustion front stability, which directly influences the efficiency and safety of in-situ combustion (ISC). To provide feasible heating by artificial ignition before the implementation of ISC in the Xinjiang Fengcheng (FC) oilfields, this paper investigates the oxidation behavior of FC extra-heavy oil and its isothermal oxidized oils. Firstly, FC extra-heavy oil was subjected to isothermal oxidation experiments conducted utilizing an oxidation reactor, and the physical properties of the gaseous products and oxidized oils were analyzed. The combustion behavior of the FC extra-heavy oil and oxidized oils was then studied by non-isothermal thermogravimetry and differential scanning calorimetry. Subsequently, the Friedman and Ozawa–Flynn–Wall methods were adopted to perform kinetic analysis. Oxygen consumption was always greater than the production of CO and CO 2 , so oxygen addition reactions were the main pathway in heavy oil LTO. H/C decreased to 8.31% from 20.94% when the oxidation temperature rose from 50 °C to 150 °C, which deepened the oxidation degree. The density and viscosity of 200 °C to 350 °C oxidized oils increased at a slower rate, which may be related to the LTO heat effect. The change law of temperature interval, peak temperature, and mass loss of the oxidized oils had a good correlation with the static oxidation temperature. Compared with other oxidized oils, the peak heat flow and enthalpy of 350 °C oxidized oil increased significantly with high-temperature combustion, and were 42.4 mW/mg and 17.77 kJ/mol, respectively. The activation energy of 350 °C oxidized oil began to decrease obviously around a conversion rate of 0.4, which indicates that it was beneficial to coke deposition with stronger activity. Finally, we came up with LTO reaction mechanisms and put forward a reasonable preheating temperature for the application of ISC in FC oilfields.

Keywords: extra-heavy oil; low-temperature oxidation; isothermal oxidized oil; combustion behavior; kinetics analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6294/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6294/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6294-:d:648891

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6294-:d:648891