EconPapers    
Economics at your fingertips  
 

On the Need to Determine Accurately the Impact of Higher-Order Sensitivities on Model Sensitivity Analysis, Uncertainty Quantification and Best-Estimate Predictions

Dan Gabriel Cacuci
Additional contact information
Dan Gabriel Cacuci: Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA

Energies, 2021, vol. 14, issue 19, 1-38

Abstract: This work aims at underscoring the need for the accurate quantification of the sensitivities (i.e., functional derivatives) of the results (a.k.a. “responses”) produced by large-scale computational models with respect to the models’ parameters, which are seldom known perfectly in practice. The large impact that can arise from sensitivities of order higher than first has been highlighted by the results of a third-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark, which will be briefly reviewed in this work to underscore that neglecting the higher-order sensitivities causes substantial errors in predicting the expectation and variance of model responses. The importance of accurately computing the higher-order sensitivities is further highlighted in this work by presenting a text-book analytical example from the field of neutron transport, which impresses the need for the accurate quantification of higher-order response sensitivities by demonstrating that their neglect would lead to substantial errors in predicting the moments (expectation, variance, skewness, kurtosis) of the model response’s distribution in the phase space of model parameters. The incorporation of response sensitivities in methodologies for uncertainty quantification, data adjustment and predictive modeling currently available for nuclear engineering systems is also reviewed. The fundamental conclusion highlighted by this work is that confidence intervals and tolerance limits on results predicted by models that only employ first-order sensitivities are likely to provide a false sense of confidence, unless such models also demonstrate quantitatively that the second- and higher-order sensitivities provide negligibly small contributions to the respective tolerance limits and confidence intervals. The high-order response sensitivities to parameters underlying large-scale models can be computed most accurately and most efficiently by employing the high-order comprehensive adjoint sensitivity analysis methodology, which overcomes the curse of dimensionality that hampers other methods when applied to large-scale models involving many parameters.

Keywords: high-order response sensitivities to model parameters; curse of dimensionality; best-estimate predicted model responses; best-estimate predicted model parameters; adjusted parameters and responses; data assimilation; model calibration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6318/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6318/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6318-:d:649320

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6318-:d:649320