EconPapers    
Economics at your fingertips  
 

Facilitating Machine Learning Model Comparison and Explanation through a Radial Visualisation

Jianlong Zhou, Weidong Huang and Fang Chen
Additional contact information
Jianlong Zhou: Data Science Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
Weidong Huang: TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia
Fang Chen: Data Science Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia

Energies, 2021, vol. 14, issue 21, 1-20

Abstract: Building an effective Machine Learning (ML) model for a data set is a difficult task involving various steps. One of the most important steps is to compare a substantial amount of generated ML models to find the optimal one for deployment. It is challenging to compare such models with a dynamic number of features. Comparison is more than only finding differences of ML model performance, as users are also interested in the relations between features and model performance such as feature importance for ML explanations. This paper proposes RadialNet Chart , a novel visualisation approach, to compare ML models trained with a different number of features of a given data set while revealing implicit dependent relations. In RadialNet Chart, ML models and features are represented by lines and arcs, respectively. These lines are generated effectively using a recursive function. The dependence of ML models with a dynamic number of features is encoded into the structure of visualisation, where ML models and their dependent features are directly revealed from related line connections. ML model performance information is encoded with colour and line width in RadialNet Chart. Taken together with the structure of visualisation, feature importance can be directly discerned in RadialNet Chart for ML explanations. Compared with other commonly used visualisation approaches, RadialNet Chart can help to simplify the ML model comparison process with different benefits such as the following: more efficient in terms of helping users to focus their attention to find visual elements of interest and easier to compare ML performance to find optimal ML model and discern important features visually and directly instead of through complex algorithmic calculations for ML explanations.

Keywords: machine learning; performance; bar chart; line chart; radar chart; RadialNet chart; visualisation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7049/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7049/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7049-:d:666504

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7049-:d:666504