EconPapers    
Economics at your fingertips  
 

Controlled Energy Flow in Z-Source Inverters

Zbigniew Rymarski, Krzysztof Bernacki and Łukasz Dyga
Additional contact information
Zbigniew Rymarski: Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Krzysztof Bernacki: Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Łukasz Dyga: Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

Energies, 2021, vol. 14, issue 21, 1-15

Abstract: This paper proposes a method to reduce the output voltage distortions in voltage source inverters (VSI) working with impedance networks. The three main reasons for the voltage distortions include a discontinuous current in the coils of the impedance network, the double output frequency harmonics in the VSI’s voltage output caused by insufficient capacitance in the impedance network, and voltage drops on the bridge switches during the shoot-through time. The first of these distortions can be reduced by increasing the current of the impedance network when the output VSI current is low. This method requires storing energy in the battery connected to the DC link of the VSI during the “non-shoot through” time. Furthermore, this solution can also be used when the Z-source inverter works with a photovoltaic cell to help it attain a maximum power point. The Z-source inverter is essentially a voltage source inverter with the Z-source in the input. In this paper, the theory behind basic impedance networks of Z-source and quasi-Z-source (qZ-source) is investigated where simulations of the presented solutions and experimental verification of the results are also presented.

Keywords: impedance network; Z-source; quasi-Z-source; voltage source inverter; voltage distortions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7272/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7272/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7272-:d:671404

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7272-:d:671404