EconPapers    
Economics at your fingertips  
 

Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network

Rocio Camarena-Martinez, Rocio A. Lizarraga-Morales and Roberto Baeza-Serrato
Additional contact information
Rocio Camarena-Martinez: Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico
Rocio A. Lizarraga-Morales: Departamento de Arte y Empresa, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca 36885, Guanajuato, Mexico
Roberto Baeza-Serrato: Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico

Energies, 2021, vol. 14, issue 21, 1-13

Abstract: Recently, biodigesters have attracted much attention as an efficient alternative for energy generation and organic waste treatment. The final performance of a biodigester depends heavily on the quality of its building process and the selection of its raw material: the geomembrane. The geomembrane is the coat that covers the biodigester used to control the migration of fluids. Therefore, the selection of the proper geomembrane, in terms of thickness, resistance, flexibility, etc., is fundamental. Unfortunately, there are no studies for the selection of geomembranes, and usually, it is an empirical process performed by workers based on their own experience. Such empirical selection might be inaccurate, limited, inconvenient, and even dangerous. In order to assist workers during the building process of a biodigester, this study proposes the use of an Artificial Neural Network (ANN) to classify a geomembrane as appropriate or not appropriate for the manufacture of a biodigester. The ANN is trained with a database built from qualitative and quantitative evaluations of different characteristics of geomembranes. The results indicate that the proposed ANN classifies the most suitable geomembranes with a 99.9% success rate. The proposed ANN becomes a reliable tool that contributes to the quality and safety of a biodigester.

Keywords: artificial intelligence; artificial neural network; biodigester; geomembrane; quality; raw material; thermofusion process (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7345/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7345/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7345-:d:672368

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7345-:d:672368