EconPapers    
Economics at your fingertips  
 

Modeling of a Reduced Hybrid H 2 –Air Kinetic Scheme Integrating the Effect of Hypersonic Reactive Air with Supersonic Combustion

Longfei Li and Jiangfeng Wang
Additional contact information
Longfei Li: Key Laboratory of Unsteady Aerodynamics and Flow Control of Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Jiangfeng Wang: Key Laboratory of Unsteady Aerodynamics and Flow Control of Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Energies, 2021, vol. 14, issue 22, 1-27

Abstract: A hybrid H 2 –air kinetic scheme of 11 species and 15 reactions is developed, which is capable of simulating the high-temperature air reaction flows and H 2 –O 2 combustion flows respectively or simultaneously. Based on the Gupta scheme, the mole fraction varying with a Mach number at specific conditions is analyzed, and the weakly-ionized 7-species 7-reaction scheme is selected. The effect of nitrogenous species on the H 2 –O 2 combustion is analyzed by a zero-dimensional simulation of steady-state and unsteady-state combustion under specified conditions, and the selected dominant nitrogenous reaction N + OH = NO + H is distinguished by the production rate of the nitrogenous species. The thermodynamic properties are verified by comparison using the NIST–JANAF database. The reaction rate coefficients of the dominant reaction of the hybrid kinetic scheme distinguished by a sensitivity analysis are corrected. The proposed kinetic scheme is validated by a zero-dimensional calculation of the ignition delay time and two-dimensional computational fluid dynamics (CFD) simulation with finite-rate chemistry on the shock-induced sub-detonative and super-detonative combustion. The ignition delay time of the hybrid kinetic scheme is almost in the middle between the Shang scheme and Jachimowski scheme, and all the calculated ignition delay times are acceptably greater than the experiments due to the errors of the experiments and numerical models. The clearly captured bow shock wave and combustion front using the hybrid kinetic scheme and Shang scheme are almost the same, which is strongly consistent with the schlieren image. In addition, a good agreement of the flow characteristics and mass fraction of the species along the stagnation line is also obtained, which indicates the accuracy and reasonableness of the hybrid kinetic scheme to simulate hybrid H 2 –air reactive flows.

Keywords: hypersonic reactive flow; H 2 –O 2 combustion reactions; sensitivity analysis; ignition delay time; shock-induced detonation; kinetic scheme (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7728/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7728/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7728-:d:681834

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7728-:d:681834