EconPapers    
Economics at your fingertips  
 

The Efficiency of Obtaining Electricity and Heat from the Photovoltaic Module under Different Irradiance Conditions

Mariusz T. Sarniak
Additional contact information
Mariusz T. Sarniak: Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Plock, Poland

Energies, 2021, vol. 14, issue 24, 1-13

Abstract: This paper proposes a modification to the design of a standard PV module by enclosing the skeleton space and using forced ventilation. The purpose of this research was to develop a method for calculating the amount of heat gained during PV module cooling. A simplifying assumption was to omit the electrical energy consumed by the fans forcing the airflow. For testing at low irradiance, a prototype halogen radiation simulator of our own design was used, which is not a standardized radiation source used for testing PV modules. Two measurements were also made under natural, stable solar radiation. The modified PV module was tested for three ventilation rates and compared with the results obtained for the standard PV module. In all tested cases, an increase in electrical efficiency of about 2% was observed with increasing radiation intensity. The thermal efficiency decreased by about 5% in the analyzed cases and the highest value of 10.47% was obtained for the highest value of cooling airflow rate. In conclusion, the study results represent a certain compromise: an increase in electrical efficiency with a simultaneous decrease in thermal efficiency.

Keywords: photovoltaics; photovoltaic module; heat recovery; electrical and thermal efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/24/8271/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/24/8271/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:24:p:8271-:d:697959

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8271-:d:697959