Generic Upscaling Methodology of a Floating Offshore Wind Turbine
Jeffrey Wu and
Moo-Hyun Kim
Additional contact information
Jeffrey Wu: Department of Ocean Engineering, Texas A&M University, College Station, TX 77843, USA
Moo-Hyun Kim: Department of Ocean Engineering, Texas A&M University, College Station, TX 77843, USA
Energies, 2021, vol. 14, issue 24, 1-14
Abstract:
This study presents a generic method to upscale a semi-submersible substructure and tower-nacelle-blade for a floating offshore wind turbine from 5 MW to 15 MW and beyond. The effects of upscaling the column radius and/or distance of the floating base are investigated, and a comparison is made with a 15 MW reference design. It is found that scaling column radius increases the mass of the platform and the heave natural period, while scaling column distance raises the center of gravity and metacentric height of the floating system and slightly decreases the heave natural period. The 15 MW reference design addresses these issues through design changes that increase the ballast mass to lower the center of gravity, and increase the added mass to raise the heave natural period. Finally, a method for estimating the scaling of platform parameters with different assumptions is proposed.
Keywords: floating offshore wind turbine; semi-submersible; upscaling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/24/8490/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/24/8490/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:24:p:8490-:d:703934
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().