Virtual State Feedback Reference Tuning and Value Iteration Reinforcement Learning for Unknown Observable Systems Control
Mircea-Bogdan Radac and
Anamaria-Ioana Borlea
Additional contact information
Mircea-Bogdan Radac: Department of Automation and Applied Informatics, Politehnica University of Timisoara, 300223 Timisoara, Romania
Anamaria-Ioana Borlea: Department of Automation and Applied Informatics, Politehnica University of Timisoara, 300223 Timisoara, Romania
Energies, 2021, vol. 14, issue 4, 1-26
Abstract:
In this paper, a novel Virtual State-feedback Reference Feedback Tuning (VSFRT) and Approximate Iterative Value Iteration Reinforcement Learning (AI-VIRL) are applied for learning linear reference model output (LRMO) tracking control of observable systems with unknown dynamics. For the observable system, a new state representation in terms of input/output (IO) data is derived. Consequently, the Virtual State Feedback Tuning (VRFT)-based solution is redefined to accommodate virtual state feedback control, leading to an original stability-certified Virtual State-Feedback Reference Tuning (VSFRT) concept. Both VSFRT and AI-VIRL use neural networks controllers. We find that AI-VIRL is significantly more computationally demanding and more sensitive to the exploration settings, while leading to inferior LRMO tracking performance when compared to VSFRT. It is not helped either by transfer learning the VSFRT control as initialization for AI-VIRL. State dimensionality reduction using machine learning techniques such as principal component analysis and autoencoders does not improve on the best learned tracking performance however it trades off the learning complexity. Surprisingly, unlike AI-VIRL, the VSFRT control is one-shot (non-iterative) and learns stabilizing controllers even in poorly, open-loop explored environments, proving to be superior in learning LRMO tracking control. Validation on two nonlinear coupled multivariable complex systems serves as a comprehensive case study.
Keywords: learning control; reference model output tracking; neural networks; state-feedback; reinforcement learning; observability; virtual state-feedback reference tuning; robotic systems; dimensionality reduction; transfer learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/1006/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/1006/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:1006-:d:499530
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().