EconPapers    
Economics at your fingertips  
 

The Effect of Climate on the Solar Radiation Components on Building Skins and Building Integrated Photovoltaics (BIPV) Materials

Hassan Gholami and Harald Nils Røstvik
Additional contact information
Hassan Gholami: City- and Regional Planning, Institute of Safety, Economics and Planning (ISØP), Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
Harald Nils Røstvik: City- and Regional Planning, Institute of Safety, Economics and Planning (ISØP), Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway

Energies, 2021, vol. 14, issue 7, 1-15

Abstract: The business model of building-integrated photovoltaics (BIPV) is developing expeditiously and BIPV will soon be recognised as a building envelope material for the entire building skins, among other alternatives such as brick, wood, stone, metals, etc. This paper investigates the effect of climate on the solar radiation components on building skins and BIPV materials in the northern hemisphere. The selected cities are Stavanger in Norway, Bern in Switzerland, Rome in Italy, and Dubai in the UAE. The study showed that for all the studied climates, the average incident radiation on the entire building skins is slightly more than the average incident radiation on the east or west facades, regardless of the orientations of the building facades. Furthermore, the correlation between solar radiation components and different BIPV technologies is discussed in this paper. It is also found that when it comes to the efficiency of different BIPV cells, the impact of the climate on some of the BIPV technologies (such as DSC and OSC) is much more significant than others (such as c-Si, mc-Si and CIGS). The evidence from this study suggests that in climates with higher diffuse radiation-or with more overcast days per year-the contribution of IR radiation decreases. Therefore, the efficiency of BIPV materials that their spectral responses are dependent on the IR radiation (like Si and CIGS) in such a climate would drop down meaningfully. On the other hand, the DSC and OSC solar cells could be a good option for cloudy climates since they have more stable performance, even in such a climate. Although, their efficiency compared to other BIPV materials such as Si-based BIPV solar cells is still significantly less thus far.

Keywords: building skin; building envelope materials; climate change; solar radiation components; building-integrated photovoltaics (BIPV) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/7/1847/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/7/1847/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:7:p:1847-:d:524764

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1847-:d:524764