Experimental Study of Power Generation and COD Removal Efficiency by Air Cathode Microbial Fuel Cell Using Shewanella baltica 20
Subhashis Das and
Rajnish Kaur Calay
Additional contact information
Subhashis Das: Faculty of Engineering Science and Technology, UiT-The Arctic University of Norway, 8514 Narvik, Norway
Rajnish Kaur Calay: Faculty of Engineering Science and Technology, UiT-The Arctic University of Norway, 8514 Narvik, Norway
Energies, 2022, vol. 15, issue 11, 1-12
Abstract:
Microbial fuel cells (MFCs) are a kind of bioreactor for generating electricity, facilitated by exoelectrogens while treating wastewater. The present article focuses on the performance of an air cathode plexiglass MFC in terms of chemical oxygen demand (COD) removal efficiency and power output by performing two sets of experiments. The proton exchange membrane and electrode materials were Nafion 117 and carbon felts, whereas, for stable biofilm formation on the anode surface, a pure culture of Shewanella baltica 20 was used. Firstly, sterile Luria-Bertani (LB) media containing lactate, ranging from 20 to 100 mM, was continuously fed to an MFC, and a maximum power density of 55 mW/m 2 was observed. Similarly, artificial wastewater with COD ranging from 3250 mg/L to 10,272 mg/L was supplied to the MFC in the second set of experiments. In this case, the maximum power density and COD removal efficiency were 12 mW/m 2 and 57%, respectively. In both cases, the hydraulic retention time (HRT) was 1.5 h. It was found that electricity generation depends on the characteristics of the wastewater. These initial findings confirm that the design aspects of an MFC, i.e., surface area to volume ratio, and external resistance with respect to the quality of influent need to be optimised to improve the MFC’s performance.
Keywords: microbial fuel cell; power density; COD removal efficiency; energy harvest; Shewanella baltica 20 (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/11/4152/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/11/4152/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:11:p:4152-:d:832051
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().