EconPapers    
Economics at your fingertips  
 

Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties

Romain Guibert, Marfa Nazarova, Marco Voltolini, Thibaud Beretta, Gerald Debenest and Patrice Creux ()
Additional contact information
Romain Guibert: Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
Marfa Nazarova: Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64000 Pau, France
Marco Voltolini: Earth and Environmental Sciences Area, Energy Geoscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Thibaud Beretta: Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64000 Pau, France
Gerald Debenest: Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
Patrice Creux: Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64000 Pau, France

Energies, 2022, vol. 15, issue 20, 1-14

Abstract: Estimating porous media properties is a vital component of geosciences and the physics of porous media. Until now, imaging techniques have focused on methodologies to match image-derived flows or geomechanical parameters with experimentally identified values. Less emphasis has been placed on the compromise between image processing techniques and the consequences on topological and morphological characteristics and on computed properties such as permeability. The effects of some of the most popular image processing techniques (filtering and segmentation) available in open source on 3D X-ray Microscopy (micro-XRM) images are qualitatively and quantitatively discussed. We observe the impacts of various filters such as erosion-dilation and compare the efficiency of Otsu’s method of thresholding and the machine-learning-based software Ilastik for segmentation.

Keywords: porous media; pore scale; image processing; segmentation; computed micro-X-ray microscopy; effective properties; digital rock physics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7796/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7796/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7796-:d:949337

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7796-:d:949337