Efficient Demand Side Management Using a Novel Decentralized Building Automation Algorithm
Christodoulos Spagkakas,
Dimitrios Stimoniaris and
Dimitrios Tsiamitros ()
Additional contact information
Christodoulos Spagkakas: Department of Electrical and Computer Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
Dimitrios Stimoniaris: Department of Electrical and Computer Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
Dimitrios Tsiamitros: Department of Electrical and Computer Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
Energies, 2023, vol. 16, issue 19, 1-17
Abstract:
Given its adaptable and efficient energy consuming devices during peak hours, the residential building sector is urged to take part in demand response (DR) initiatives with the use of a building energy management system (BMS). The residents of buildings with BMS enjoy secure, pleasant, and fully managed lifestyles. Although the BMS helps the building consume less energy and encourages occupant engagement in energy-saving initiatives, unwelcome interruptions and harsh instructions from the system are inconvenient for the inhabitants, which further discourages their participation in DR initiatives. Building automation control is a crucial factor for improving buildings’ energy efficiency and management, as well as improving the electricity grid’s reliability indices. Smart houses that use the right sizing procedure and energy-management techniques can help lower the demand on the entire grid and potentially sell clean energy to the utility. Recently, smart houses have been presented as an alternative to traditional power-system issues including thermal plant emissions and the risk of blackouts brought on by malfunctioning bulk plants or transmission lines. This paper describes the necessary technology requirements and presents the methodology and the decentralized building automation novel algorithm for efficient demand side management in a building management system. Human comfort aspects including thermal comfort and visual comfort were taken into consideration when selecting heating and lighting controls. The suggested BMS relies primarily on a load-shifting technique, which moves controllable loads to low-cost periods to avoid high loading during peak hours. The model aims to minimize the individual household electricity consumption cost while considering customers’ comfort and lifestyle. All these are applied in an experimental university microgrid, and the results are presented in terms of energy saving in kWh, money in €, and working hours. The results demonstrated that the proposed approach might successfully lower energy use during the DR period and enhance occupant comfort.
Keywords: smart grid; building automation; energy efficiency; energy management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6852/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6852/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6852-:d:1249350
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().