EconPapers    
Economics at your fingertips  
 

Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels

Agnieszka Surowiak () and Mustapha Wahman ()
Additional contact information
Agnieszka Surowiak: Faculty of Civil Engineering and Resource Management, Department of Environmental Engineering, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Mustapha Wahman: Faculty of Civil Engineering and Resource Management, Department of Environmental Engineering, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland

Energies, 2024, vol. 17, issue 17, 1-11

Abstract: This paper presents a sustainable recycling process for the separation and recovery of tempered glass from end-of-life photovoltaic (PV) modules. As glass accounts for 75% of the weight of a panel, its recovery is an important step in the recycling process. Current methods, such as mechanical, chemical and thermal processes, often lead to contamination of the glass and pose significant environmental risks. In response to these challenges, a thermal–mechanical delamination approach is proposed in this study. The method utilizes controlled heat application (hot air gun) to weaken the adhesive bond between the glass and encapsulant, allowing for separation with a thin stainless steel wire. Various analytical methods, including X-ray diffraction analysis (XRD), X-ray fluorescence (XRF) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), were used to verify the effectiveness of the proposed method. The results show that the proposed method is effective. In less than a minute, the glass layer was separated and recovered with a success rate of over 99%, with no degradation of the material or release of gasses. The significance of this process lies in its ability to recover high-purity glass while minimizing the impact on the environment. This opens up the possibility of reusing the recovered tempered glass in new PV panels or other applications, reducing the need for virgin materials and lowering the overall environmental footprint of the solar energy industry.

Keywords: PV recycling; glass recovery; thermal–mechanical delamination; sustainable; environmental impact (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/17/4444/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/17/4444/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:17:p:4444-:d:1471442

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4444-:d:1471442