Dynamic Modeling and Performance Analysis of Liquid Carbon Dioxide Energy Storage System
Aolei Chen,
Xinyuan Nan () and
Xin Cai
Additional contact information
Aolei Chen: College of Electrical Engineering, Xinjiang University, Urumqi 830017, China
Xinyuan Nan: College of Electrical Engineering, Xinjiang University, Urumqi 830017, China
Xin Cai: College of Electrical Engineering, Xinjiang University, Urumqi 830017, China
Energies, 2025, vol. 18, issue 11, 1-22
Abstract:
With the large-scale grid connection of renewable energy and the surge of peak power system demand, liquid carbon dioxide energy storage technology has become a research hotspot due to its high energy density and environmental friendliness. However, most of the existing research focuses on the steady-state performance of the system, and the parameter coupling and transient response characteristics under dynamic operating conditions are not yet clear. To this end, this paper constructs a dynamic simulation model of a 10 MW-class liquid carbon dioxide energy storage (LCES) based on the Simulink platform, focuses on the coupling effects of the compressor inlet temperature, pressure, and mass flow rate and the expander inlet mass flow rate on the system parameters, and reveals the dynamic correlation between the system work and the state of charge value of the tank under the variable power working condition. The results show that the system’s round-trip efficiency (RTE) is 65.3% under design conditions, and the energy density reaches 34.79 kW·h·m −3 . Perturbation analysis shows that when the compressor inlet temperature rises from 283.15 K to 303.15 K, the power consumption fluctuates in the range of 96.84% to 102.99% under design conditions. The inlet pressure perturbation (0.5~1.5 bar) will cause the power consumption of the compressor to change by 80.2%. In variable power operation, the state of charge value of the high-pressure liquid tank level in the energy storage stage rises from 0 to 84.89%, and the state of charge value of the high-pressure liquid tank level in the energy release stage decreases from 84.89% to 31.48%. The dynamic model proposed in this paper can accurately capture the transient response characteristics of the system and provide theoretical support for the optimization design and engineering application of LCES.
Keywords: compressed carbon dioxide energy storage; dynamic modeling; design conditions; perturbation analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2955/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2955/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2955-:d:1671566
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().