EconPapers    
Economics at your fingertips  
 

Robust Adaptive Fractional-Order PID Controller Design for High-Power DC-DC Dual Active Bridge Converter Enhanced Using Multi-Agent Deep Deterministic Policy Gradient Algorithm for Electric Vehicles

Seyyed Morteza Ghamari (), Daryoush Habibi and Asma Aziz
Additional contact information
Seyyed Morteza Ghamari: School of Engineering, Edith Cowan University, Perth, WA 6027, Australia
Daryoush Habibi: School of Engineering, Edith Cowan University, Perth, WA 6027, Australia
Asma Aziz: School of Engineering, Edith Cowan University, Perth, WA 6027, Australia

Energies, 2025, vol. 18, issue 12, 1-34

Abstract: The Dual Active Bridge converter (DABC), known for its bidirectional power transfer capability and high efficiency, plays a crucial role in various applications, particularly in electric vehicles (EVs), where it facilitates energy storage, battery charging, and grid integration. The Dual Active Bridge Converter (DABC), when paired with a high-performance CLLC filter, is well-regarded for its ability to transfer power bidirectionally with high efficiency, making it valuable across a range of energy applications. While these features make the DABC highly efficient, they also complicate controller design due to nonlinear behavior, fast switching, and sensitivity to component variations. We have used a Fractional-order PID (FOPID) controller to benefit from the simple structure of classical PID controllers with lower complexity and improved flexibility because of additional filtering gains adopted in this method. However, for a FOPID controller to operate effectively under real-time conditions, its parameters must adapt continuously to changes in the system. To achieve this adaptability, a Multi-Agent Reinforcement Learning (MARL) approach is adopted, where each gain of the controller is tuned individually using the Deep Deterministic Policy Gradient (DDPG) algorithm. This structure enhances the controller’s ability to respond to external disturbances with greater robustness and adaptability. Meanwhile, finding the best initial gains in the RL structure can decrease the overall efficiency and tracking performance of the controller. To overcome this issue, Grey Wolf Optimization (GWO) algorithm is proposed to identify the most suitable initial gains for each agent, providing faster adaptation and consistent performance during the training process. The complete approach is tested using a Hardware-in-the-Loop (HIL) platform, where results confirm accurate voltage control and resilient dynamic behavior under practical conditions. In addition, the controller’s performance was validated under a battery management scenario where the DAB converter interacts with a nonlinear lithium-ion battery. The controller successfully regulated the State of Charge (SOC) through automated charging and discharging transitions, demonstrating its real-time adaptability for BMS-integrated EV systems. Consequently, the proposed MARL-FOPID controller reported better disturbance-rejection performance in different working cases compared to other conventional methods.

Keywords: dual active bridge converter; fractional-order concept; reinforcement learning technique; multi-agent; Hardware-in-Loop; deep deterministic policy gradient (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3046/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3046/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3046-:d:1674897

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-28
Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3046-:d:1674897