Review of Film Cooling Techniques for Aerospace Vehicles
Edidiong Michael Umana and
Xiufeng Yang ()
Additional contact information
Edidiong Michael Umana: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Xiufeng Yang: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Energies, 2025, vol. 18, issue 12, 1-64
Abstract:
Film cooling, a vital method for controlling surface temperatures in components subjected to intense heat, strives to enhance efficiency through innovative technological advancements. Over the last several decades, considerable advancements have been made in film cooling technologies for applications such as liquid rocket engines, combustion chambers, nozzle sections, gas turbine components, and hypersonic vehicles, all of which operate under extreme temperatures. This review presents an in-depth investigation of film cooling, its applications, and its key mechanisms and performance characteristics. The review also explores design optimization for combustion chamber components and examines the role of gaseous film cooling in nozzle systems, supported by experimental and numerical validation. Gas turbine cooling relies on integrated methods, including internal and external cooling, material selection, and coolant treatment to prevent overheating. Notably, the cross-flow jet in blade cooling improves heat transfer and reduces thermal fatigue. Film cooling is an indispensable technique for addressing the challenges of high-speed and hypersonic flight, aided by cutting-edge injection methods and advanced transpiration coolants. Special attention is given to factors influencing film cooling performance, as well as state-of-the-art developments in the field. The challenges related to film cooling are reviewed and presented, along with the difficulties in resolving them. Suggestions for addressing these problems in future research are also provided.
Keywords: film cooling; hypersonic vehicle; cooling effectiveness; liquid coolant; slot configurations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3058/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3058/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3058-:d:1675371
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().