EconPapers    
Economics at your fingertips  
 

Comparative Analysis of Hybrid Deep Learning Models for Electricity Load Forecasting During Extreme Weather

Altan Unlu () and Malaquias Peña
Additional contact information
Altan Unlu: Eversource Energy Center, University of Connecticut, Storrs, CT 06268, USA
Malaquias Peña: Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06268, USA

Energies, 2025, vol. 18, issue 12, 1-27

Abstract: Extreme weather events present some of the most severe natural threats to the electric grid, and accurate load forecasting during those events is essential for grid management and disaster preparedness. In this study, we evaluate the effectiveness of hybrid deep learning (DL) models for electrical load forecasting in the IEEE 118-bus system. Our analysis focuses on the Connecticut region during extreme weather. In addition, we determine multivariate models capable of multi-input and multi-output forecasting while incorporating weather data to improve forecasting accuracy. This research is divided into two case studies that analyze different combined DL model architectures. Case Study 1 conducts CNN-Recurrent (RNN, LSTM, GRU, BiRNN, BiGRU, and BiLSTM) models with fully connected dense layers, which combine convolution and recurrent neural networks to capture both spatial and temporal dependencies in the data. Case Study 2 evaluates Hybrid CNN-Recurrent models with a fully connected dense layer model that incorporates a flattening step before the recurrent layers to increase the temporal learning process. Based on the results obtained from our simulations, the hybrid CNN-GRU-FC (using BiGRU) model in Case Study 2 obtained the best performance with an RMSE of 9.112 MW and MAPE of 11.68% during the hurricane period. The Hybrid CNN-GRU-FC model presents a better accuracy of bidirectional recurrent models for load forecasting under extreme weather conditions.

Keywords: load forecasting; extreme weather; combined and hybrid deep learning models; multi-input multi-output forecasting; CNN; RNN; LSTM; GRU; BiRNN; BiLSTM; BiGRU; FC (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3068/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3068/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3068-:d:1675716

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-28
Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3068-:d:1675716