Effect of Blade Profile on Flow Characteristics and Efficiency of Cross-Flow Turbines
Ephrem Yohannes Assefa and
Asfafaw Haileselassie Tesfay ()
Additional contact information
Ephrem Yohannes Assefa: School of Mechanical and Industrial Engineering, Ethiopian Institute of Technology, Mekelle, Mekelle University, Mekelle P.O. Box 231, Ethiopia
Asfafaw Haileselassie Tesfay: School of Mechanical and Industrial Engineering, Ethiopian Institute of Technology, Mekelle, Mekelle University, Mekelle P.O. Box 231, Ethiopia
Energies, 2025, vol. 18, issue 12, 1-33
Abstract:
This study presents a comprehensive numerical investigation into the influence of blade profile geometry on the internal flow dynamics and hydraulic performance of Cross-Flow Turbines (CFTs) under varying runner speeds. Four blade configurations, flat, round, sharp, and aerodynamic, were systematically evaluated using steady-state, two-dimensional Computational Fluid Dynamics (CFD) simulations. The Shear Stress Transport (SST) k–ω turbulence model was employed to resolve the flow separation, recirculation, and turbulence across both energy conversion stages of the turbine. The simulations were performed across runner speeds ranging from 270 to 940 rpm under a constant head of 10 m. The performance metrics, including the torque, hydraulic efficiency, water volume fraction, pressure distribution, and velocity field characteristics, were analyzed in detail. The aerodynamic blade consistently outperformed the other geometries, achieving a peak efficiency of 83.5% at 800 rpm, with improved flow attachment, reduced vortex shedding, and lower exit pressure. Sharp blades also demonstrated competitive efficiency within a narrower optimal speed range. In contrast, the flat and round blades exhibited higher turbulence and recirculation, particularly at off-optimal speeds. The results underscore the pivotal role of blade edge geometry in enhancing energy recovery, suppressing flow instabilities, and optimizing the stage-wise performance in CFTs. These findings offer valuable insights for the design of high-efficiency, site-adapted turbines suitable for micro-hydropower applications.
Keywords: cross-flow turbine; blade profile; hydraulic efficiency; internal flow; CFD and micro-hydropower (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3203/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3203/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3203-:d:1682067
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().