EconPapers    
Economics at your fingertips  
 

Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review

Arman Fathollahi ()
Additional contact information
Arman Fathollahi: Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark

Energies, 2025, vol. 18, issue 13, 1-33

Abstract: The incorporation of renewable energy sources in power grids has necessitated innovative solutions for effective energy management. Smart grids have emerged as transformative systems which integrate consumer, generator and dual-role entities to deliver secure, sustainable and economical electricity supplies. This review explores the important role of artificial intelligence and machine learning approaches in managing the developing stability characteristics of smart grids. This work starts with a discussion of the smart grid’s dynamic structures and subsequently transitions into an overview of machine learning approaches that explore various algorithms and their applications to enhance smart grid operations. A comprehensive analysis of frameworks illustrates how machine learning and artificial intelligence solve issues related to distributed energy supplies, load management and contingency planning. This review includes general pseudocode and schematic architectures of artificial intelligence and machine learning methods which are categorized into supervised, semi-supervised, unsupervised and reinforcement learning. It includes support vector machines, decision trees, artificial neural networks, extreme learning machines and probabilistic graphical models, as well as reinforcement strategies like dynamic programming, Monte Carlo methods, temporal difference learning and Deep Q-networks, etc. Examination extends to stability, voltage and frequency regulation along with fault detection methods that highlight their applications in increasing smart grid operational boundaries. The review underlines the various arrays of machine learning algorithms that emphasize the integration of reinforcement learning as a pivotal enhancement in intelligent decision-making within smart grid environments. As a resource this review offers insights for researchers, practitioners and policymakers by providing a roadmap for leveraging intelligent technologies in smart grid control and stability analysis.

Keywords: smart grids; renewable energy resources; machine learning; artificial intelligence; stability analysis; grid stability; resonance stability; converter-based stability; grid control; sustainable energy; neural network; reinforcement learning; deep learning; support vector machine; power systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/13/3431/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/13/3431/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-01
Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188