Operation Optimization of a Combined Heat and Power Plant Integrated with Flexibility Retrofits in the Electricity Market
Hongjin Chen and
Jiwei Song ()
Additional contact information
Hongjin Chen: School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan 250061, China
Jiwei Song: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Energies, 2025, vol. 18, issue 13, 1-21
Abstract:
Enhancing the load-adjustment flexibility of combined heat and power units facilitates the integration of renewable energy and enhances their profitability in dynamic electricity markets. However, the optimal coordination of various retrofitted combined heat and power units to maximize profitability has not been thoroughly investigated. To address this gap, this study conducts thermodynamic analysis and operation optimization for a combined heat and power plant integrated with flexibility retrofits, by developing models for the extraction-condensing unit, high back-pressure retrofitted unit, and low-pressure turbine zero output retrofitted unit. Results show that the low-pressure turbine zero output retrofitted unit achieves the largest energy efficiency (90.7%), while the extraction-condensing unit attains the highest exergy efficiency (38.0%). A plant-level optimization model is proposed to maximize profitability, demonstrating that the retrofitted combined heat and power plant increases total profit by 8.1% (CNY 86.4 million) compared to the original plant (CNY 79.9 million). The profit improvement stems from reduced coal consumption and enhanced heating capacity, enabling better power generation optimization. Furthermore, the study evaluates the profitability under different retrofit combinations. The findings reveal that an optimal profit can be achieved by reasonably coordinating the energy-saving characteristics of high back-pressure units, the heat supply capacity of low-pressure turbine zero output units, and the flexible adjustment capability of extraction-condensing units.
Keywords: combined heat and power; high back-pressure; low-pressure turbine zero output; energy and exergy efficiency; retrofit combinations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/13/3583/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/13/3583/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:13:p:3583-:d:1696572
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().