Enhancing Photovoltaic Energy Output Predictions Using ANN and DNN: A Hyperparameter Optimization Approach
Atıl Emre Cosgun ()
Additional contact information
Atıl Emre Cosgun: Faculty of Engineering, Aksaray University, 68100 Aksaray, Türkiye
Energies, 2025, vol. 18, issue 17, 1-19
Abstract:
This study investigates the use of artificial neural networks (ANNs) and deep neural networks (DNNs) for estimating photovoltaic (PV) energy output, with a particular focus on hyperparameter tuning. Supervised regression for photovoltaic (PV) direct current power prediction was conducted using only sensor-based inputs (PanelTemp, Irradiance, AmbientTemp, Humidity), together with physically motivated-derived features (ΔT, IrradianceEff, IrradianceSq, Irradiance × ΔT). Samples acquired under very low irradiance (<50 W m −2 ) were excluded. Predictors were standardized with training-set statistics (z-score), and the target variable was modeled in log space to stabilize variance. A shallow artificial neural network (ANN; single hidden layer, widths {4–32}) was compared with deeper multilayer perceptrons (DNN; stacks {16 8}, {32 16}, {64 32}, {128 64}, {128 64 32}). Hyperparameters were selected with a grid search using validation mean squared error in log space with early stopping; Bayesian optimization was additionally applied to the ANN. Final models were retrained and evaluated on a held-out test set after inverse transformation to watts. Test performance was obtained as MSE, RMSE, MAE, R 2 , and MAPE for the ANN and DNN. Hence, superiority in absolute/squared error and explained variance was exhibited by the ANN, whereas lower relative error was achieved by the DNN with a marginal MAE advantage. Ablation studies showed that moderate depth can be beneficial (e.g., two-layer variants), and a simple bootstrap ensemble improved robustness. In summary, the ANN demonstrated superior performance in terms of absolute-error accuracy, whereas the DNN exhibited better consistency with relative-error accuracy.
Keywords: ANN; DNN; epoch; hidden layer; hyperparameter; learning rate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4564/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4564/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4564-:d:1736155
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().