Thermal Performance Study of a Novel Double-Phase Cooling Strategy in Electric Vehicle Battery Systems
Federico Sacchelli,
Luca Cattani () and
Fabio Bozzoli
Additional contact information
Federico Sacchelli: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
Luca Cattani: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
Fabio Bozzoli: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
Energies, 2025, vol. 18, issue 18, 1-21
Abstract:
In recent years, interest in lithium-ion batteries has grown significantly due to their dominance in electric mobility, driven by their high energy density. However, their performance and longevity are strongly influenced by the effectiveness of heat dissipation and thermal management. The literature indicates that battery temperature should be maintained within the optimal range of 20–40 °C, while also ensuring minimal temperature gradients within the battery pack. In this study, a thermal management system for electric vehicle batteries which combines two different cooling approaches (i.e., direct immersion cooling and pulsating heat pipes) is presented. In particular, the battery pack is placed inside a PVC case and completely submerged by a low-boiling dielectric fluid (T bp = 33.4 °C at 1 atm) to take advantage of the excellent thermal properties of the liquid and of the latent heat during phase change. The evaporator section of the pulsating heat pipe is positioned in the vapor phase region of the dielectric fluid, while the condenser section is located outside the PVC box and cooled by an airflow in natural convection. This setup is a completely passive system. To evaluate the cooling performance of the dual two-phase cooling system, tests were conducted on the battery pack at three different discharge C-rates 0.5C, 1C, and 2C that reproduce the working conditions of a real-world battery. To evaluate the effectiveness of the new setup, its performance was compared with cooling based on natural convection and direct immersion cooling alone. These approaches were assessed under two controlled ambient temperatures—5 °C and 20 °C—to compare their performance in varying conditions. The results show that the hybrid system performs particularly well, especially because it can operate passively without requiring external power or active control mechanisms.
Keywords: battery thermal management system; dual two-phase cooling; pulsating heat pipe; liquid immersion cooling; passive cooling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4937/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4937/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4937-:d:1751071
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().