Benchmarking Transformer Variants for Hour-Ahead PV Forecasting: PatchTST with Adaptive Conformal Inference
Vishnu Suresh ()
Additional contact information
Vishnu Suresh: Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
Energies, 2025, vol. 18, issue 18, 1-26
Abstract:
Accurate hour-ahead photovoltaic (PV) forecasts are essential for grid balancing, intraday trading, and renewable integration. While Transformer architectures have recently reshaped time series forecasting, their application to short-term PV prediction with calibrated uncertainty remains largely unexplored. This study provides a systematic benchmark of five Transformer variants (Autoformer, Informer, FEDformer, DLinear, and PatchTST) evaluated on a five-year, rooftop PV dataset (5 kW peak) against an unseen 12-month test set. All models are trained within a pipeline using a 48-h rolling input window with cyclical temporal encodings to ensure comparability. Beyond point forecasts, we introduce Adaptive Conformal Inference (ACI), a distribution-free and adaptive framework, to quantify uncertainty in real time. The results demonstrate that PatchTST, through its patch-based temporal tokenization, delivers superior accuracy (MAE = 0.194 kW, RMSE = 0.381 kW), outperforming both classical persistence and other Transformer baselines. When coupled with ACI, PatchTST achieves 86.2% empirical coverage with narrow intervals (0.62 kW mean width) and probabilistic scores (CRPS = 0.54; Winkler = 1.86) that strike a balance between sharpness and reliability. The findings establish that combining patch-based Transformers with adaptive conformal calibration provides a novel and viable route to risk-aware PV forecasting.
Keywords: photovoltaic forecasting; hour-ahead forecasting; transformer models; PatchTST; adaptive conformal inference (ACI); probabilistic forecasting; uncertainty quantification (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/5000/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/5000/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:5000-:d:1753832
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().