EconPapers    
Economics at your fingertips  
 

Experimental Comparison of Water-Based Cooling Methods for PV Modules in Tropical Conditions

Nam Quyen Nguyen (), Hristo Ivanov Beloev (), Huy Bich Nguyen and Nguyen Van Lanh
Additional contact information
Nam Quyen Nguyen: Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam
Hristo Ivanov Beloev: Agrarian and Industrial Faculty, University of Ruse, 7004 Ruse, Bulgaria
Huy Bich Nguyen: Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam
Nguyen Van Lanh: Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam

Energies, 2025, vol. 18, issue 19, 1-19

Abstract: It is well known that temperature strongly affects the photovoltaic (PV) performance. Raising the working temperature leads to a significant decrease in PV output of the power capacity, and it also lowers power conversion efficiency. This issue is highly important for the PV systems operating in tropical climate areas such as southern Viet Nam. Developing the cooling methods applied for reducing the PV module temperature might be the solution to this problem and has attracted many researchers and industrial sectors. However, the existing research might not sufficiently address the comparative evaluation of multiple active water-based cooling methods on power conservation efficiency, power output, and cost implications under high-temperature conditions in tropical areas. This study is a case study that aims at conducting some experimental investigations for active water-based cooling methods applied to PV modules in Ho Chi Minh City, South Viet Nam. There are four active water-based cooling methods, including the spraying liquid method (SL), the dripping droplet method (DD), tube heat exchanger method (TE), and the liquid flowing on the PV surface method (LF), that have been developed and experimentally investigated. The voltage, current, temperature, and humidity of the PV cells have been automatically recorded in every one-minute interval via sensors and electronic devices. The experimental results indicate that the surface temperature, the power conversion efficiency, and the output power of PV module are developed toward the useful and positive direction with four cooling methods. In detail, the SL is the best one, in which it leads the PV temperature to reduce from 52 °C to 34–35 °C, the output power increases up to 6.3%, its power conversion efficiency improves up to 2%, while the water flow rate is at its lowest with 0.65 L/min. Similarly, LF also creates results that are similar to SL, but it needs a higher amount of cooling water, which is up to 3.27 L/min. The other methods, like DD and TE, have less power conversion efficiency compared to the SL; it improves only around 1 to 1.3%. These results might be useful for improving the benefits of PV power generation in some tropical regions and contributing to the green energy development in the world.

Keywords: photovoltaic (PV) cells; PV cooling; PV power conversion efficiency; energy saving; solar radiation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/19/5054/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/19/5054/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:19:p:5054-:d:1756224

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-24
Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5054-:d:1756224