EconPapers    
Economics at your fingertips  
 

Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems

Abayomi A. Adebiyi () and Mathew Habyarimana ()
Additional contact information
Abayomi A. Adebiyi: Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa
Mathew Habyarimana: Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa

Energies, 2025, vol. 18, issue 19, 1-28

Abstract: Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental benefits, they also introduce significant energy management challenges. One major concern is the variability in energy consumption patterns within households, which can lead to inefficiencies. Also, improper energy management can result in economic losses due to unbalanced energy control or inefficient systems. Home Energy Management Systems (HEMSs) have emerged as a promising solution to address these challenges. A well-designed HEMS enables users to achieve greater efficiency in managing their energy consumption, optimizing asset usage while ensuring cost savings and system reliability. This paper presents a comprehensive systematic review of optimization techniques applied to HEMS development between 2019 and 2024, focusing on key technical and computational factors influencing their advancement. The review categorizes optimization techniques into two main groups: conventional methods, emerging techniques, and machine learning methods. By analyzing recent developments, this study provides an integrated perspective on the evolving role of HEMSs in modern power systems, highlighting trends that enhance the efficiency and effectiveness of energy management in smart grids. Unifying taxonomy of HEMSs (2019–2024) and integrating mathematical, heuristic/metaheuristic, and ML/DRL approaches across horizons, controllability, and uncertainty, we assess algorithmic complexity versus tractability, benchmark comparative evidence (cost, PAR, runtime), and highlight deployment gaps (privacy, cybersecurity, AMI/HAN, and explainability), offering a novel synthesis for AI-enabled HEMS.

Keywords: HEMS; metaheuristic approaches; optimization; demand response; explainable AI (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/19/5262/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/19/5262/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:19:p:5262-:d:1764539

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5262-:d:1764539