Bend–Twist Coupling for Small Wind Turbines: A Blade Design Methodology to Enhance Power Generation
Juan Pablo Vanegas-Alzate,
María Antonia Restrepo-Madrigal,
José Luis Torres-Madroñero,
César Nieto-Londoño (),
Germán Alberto Barragán de los Rios,
Jorge Mario Tamayo-Avendaño,
Julián Sierra-Pérez,
Joham Alvarez-Montoya and
Daniel Restrepo-Montoya
Additional contact information
Juan Pablo Vanegas-Alzate: Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
María Antonia Restrepo-Madrigal: Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
José Luis Torres-Madroñero: Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
César Nieto-Londoño: Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
Germán Alberto Barragán de los Rios: Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
Jorge Mario Tamayo-Avendaño: Grupo de Investigación e Innovación Ambiental, Departamento de Mecánica, Institución Universitaria Pascual Bravo, Medellín 050034, Colombia
Julián Sierra-Pérez: Corporación Rotorr, Universidad Nacional de Colombia, Cr. 45 26-85, Bogotá 111311, Colombia
Joham Alvarez-Montoya: Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
Daniel Restrepo-Montoya: Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
Energies, 2025, vol. 18, issue 20, 1-38
Abstract:
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and complex for small systems. An alternative is passive pitch control through bend–twist coupling in the blade structure, which enables self-regulation and improved power generation. This work proposes a novel blade design methodology for a 5 kW SWT that integrates passive bend–twist coupling with conventional pitch adjustment, thereby creating a hybrid passive–active control strategy. The methodology encompasses the definition of aerodynamic blade geometry, laminate optimization via genetic algorithms combined with finite element analysis, and experimental characterization of composite materials. Aerodynamic–structural interactions are studied using one-way fluid–structure simulations, with responses analyzed through the blade element momentum method to assess turbine performance. The results indicate that the proposed design enhances power generation by about 4%. The study’s originality lies in integrating optimization, structural tailoring, and material testing, offering one of the first demonstrations of combined passive–active pitch control in SWTs, and providing a cost-effective route to improve efficiency and reliability in decentralized renewable energy systems.
Keywords: small wind turbines; blade design; pitch control; bend–twist coupling; genetic algorithms; composite characterization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5353/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5353/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5353-:d:1768907
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().