EconPapers    
Economics at your fingertips  
 

Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock

Kai Gao, Jiamin Wang (), Chi Liu, Pengyu Mu and Yun Wu ()
Additional contact information
Kai Gao: China Fiber Quality Monitoring Center, Beijing 100007, China
Jiamin Wang: Academy of Deep Earth Sciences, Chinese Institute of Coal Science, Beijing 100013, China
Chi Liu: Academy of Deep Earth Sciences, Chinese Institute of Coal Science, Beijing 100013, China
Pengyu Mu: Academy of Deep Earth Sciences, Chinese Institute of Coal Science, Beijing 100013, China
Yun Wu: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

Energies, 2025, vol. 18, issue 20, 1-19

Abstract: Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing.

Keywords: thermal shock; mechanical properties; CT scanning; meso-structure; granite (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5366/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5366/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5366-:d:1769199

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-15
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5366-:d:1769199