EconPapers    
Economics at your fingertips  
 

NVH Optimization of Motor Based on Distributed Mathematical Model Under PWM Control

Kai Zhao, Zhihui Jin and Jian Luo ()
Additional contact information
Kai Zhao: Department of Electrical Engineering, College of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
Zhihui Jin: Department of Electrical Engineering, College of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
Jian Luo: Department of Electrical Engineering, College of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China

Energies, 2025, vol. 18, issue 20, 1-18

Abstract: For the combination of finite elements and control circuits, the calculation is complex and time-consuming, making direct optimization impractical. In this paper, a new distributed node and magnetic circuit model is proposed to simulate the spatial and temporal variation of the distributed air-gap magnetic density with the current and rotor angle and solve the electromagnetic force wave variation. Compared to other distributed flux-linkage models, the proposed model not only considers the radial magnetic path but also connects adjacent magnetic paths tangentially. The inclusion of this tangential path enhances the mutual interaction between magnetic circuits, leading to a more accurate model. Based on the control circuit model, the electromagnetic force wave changes caused by the harmonic currents under various circuits and operating conditions are calculated, the topology is analyzed and optimized to mitigate critical harmonics, the electromagnetic force wave is reduced, and finally, the model accuracy is verified experimentally. While most distributed flux-linkage models are applied to the optimization of motor performance metrics such as the magnetomotive force (MMF), power, and torque, this paper applies the model to the optimization of the magnetic field strength, the harmonic content, and the corresponding noise, vibration, and harshness (NVH), demonstrating a broader range of applications. This method can be coupled with the control circuit to analyze the changes in electromagnetic force waves and quickly optimize them, improving the accuracy and efficiency of research and development.

Keywords: harmonic compensation; distributed magnetic density; torque ripple; electromagnetic force wave (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5395/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5395/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5395-:d:1770334

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-14
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5395-:d:1770334