EconPapers    
Economics at your fingertips  
 

Towards Sustainable Buildings and Energy Communities: AI-Driven Transactive Energy, Smart Local Microgrids, and Life Cycle Integration

Andrzej Ożadowicz ()
Additional contact information
Andrzej Ożadowicz: Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2025, vol. 18, issue 21, 1-31

Abstract: The transition towards sustainable and low-carbon energy systems highlights the crucial role of buildings, microgrids, and local communities as key actors in enhancing resilience and achieving decarbonization targets. The application of artificial intelligence (AI) is of paramount importance as it enables accurate prediction, adaptive control, and optimization of distributed resources. This paper reviews recent advances in AI applications for transactive energy (TE) and dynamic energy management (DEM), focusing on their integration with building automation, microgrid coordination, and community energy exchanges. It also considers the emerging role of life cycle-based methods, such as life cycle assessment (LCA) and life cycle cost (LCC), in extending operational intelligence to long-term environmental and economic objectives. The analysis is based on a curated set of 97 publications identified through structured queries and thematic filtering. The findings indicate substantial advancement in methodological approaches, notably reinforcement learning (RL), hybrid model predictive control, federated and edge AI, and digital twin applications. However, this study also uncovers shortcomings in the integration and interoperability of sustainability. This paper contributes by consolidating fragmented research and proposing a multi-layered AI framework that aligns short-term performance with long-term resilience and sustainability.

Keywords: transactive energy; artificial intelligence; reinforcement learning; demand side management; energy efficiency; microgrid; energy communities; energy management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5668/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5668/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5668-:d:1781946

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-30
Handle: RePEc:gam:jeners:v:18:y:2025:i:21:p:5668-:d:1781946