Geomechanical Integrity of Offshore Oil Reservoir During EOR-CO 2 Process: A Case Study
Piotr Ruciński ()
Additional contact information
Piotr Ruciński: Department of Hydrocarbon Reservoir and UGS Simulation, Oil and Gas Institute—NRI, 31-503 Krakow, Poland
Energies, 2025, vol. 18, issue 21, 1-49
Abstract:
The aim of this work was to investigate the evolution of the mechanical integrity of the selected offshore oil reservoir during its life cycle. The geomechanical stability of the reservoir formation, including the caprock and base rock, was investigated from the exploitation phase through waterflooding production to the final phase of enhanced oil recovery (EOR) with CO 2 injection. In this study, non-isothermal flow simulations were performed during the process of cold water and CO 2 injection into the oil reservoir as part of the secondary EOR method. The analysis of in situ stress was performed to improve quality of the geomechanical model. The continuous changes in elastic and thermal properties were taken into account. The stress–strain tensor was calculated to efficiently describe and analyze the geomechanical phenomena occurring in the reservoir as well as in the caprock and base rock. The integrity of the reservoir formation was then analyzed in detail with regard to potential reactivation or failure associated with plastic deformation. The consideration of poroelastic and thermoelastic effects made it possible to verify the development method of the selected oil reservoir with regard to water and CO 2 injection. The numerical method that was applied to describe the evolution of an offshore oil reservoir in the context of evaluating the geomechanical state has demonstrated its usefulness and effectiveness. Thermally induced stresses have been found to play a dominant role over poroelastic stresses in securing the geomechanical stability of the reservoir and the caprock during oil recovery enhanced by water and CO 2 injection. It was found that the injection of cold water or CO 2 in a supercritical state mostly affected horizontal stress components, and the change in vertical stress was negligible. The transition from the initial strike-slip regime to the normal faulting due to formation cooling was closely related to the observed failure zones in hybrid and tensile modes. It has been estimated that changes in the geomechanical state of the oil reservoir can increase the formation permeability by sixteen times (fracture reactivation) to as much as thirty-five times (tensile failure). Despite these events, the integrity of the overburden was maintained in the simulations, demonstrating the safety of enhanced oil recovery with CO 2 injection (EOR-CO 2 ) in the selected offshore oil reservoir.
Keywords: geomechanical effects; thermal unloading; natural fractures; transport properties; enhanced oil recovery; CO 2 sequestration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5751/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5751/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5751-:d:1784446
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().