EconPapers    
Economics at your fingertips  
 

Energy Management of Hybrid Energy System Considering a Demand-Side Management Strategy and Hydrogen Storage System

Nadia Gouda and Hamed Aly ()
Additional contact information
Nadia Gouda: Smart Grid and Green Power Research Laboratory, Electrical and Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
Hamed Aly: Smart Grid and Green Power Research Laboratory, Electrical and Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada

Energies, 2025, vol. 18, issue 21, 1-26

Abstract: A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However, HES faces significant challenges due to rising energy consumption, the expenses of using multiple sources, increased emissions due to non-renewable energy resources, etc. This study aims to develop an energy management strategy for distribution grids (DGs) by incorporating a hydrogen storage system (HSS) and demand-side management strategy (DSM), through the design of a multi-objective optimization technique. The primary focus is on optimizing operational costs and reducing pollution. These are approached as minimization problems, while also addressing the challenge of achieving a high penetration of renewable energy resources, framed as a maximization problem. The third objective function is introduced through the implementation of the demand-side management strategy, aiming to minimize the energy gap between initial demand and consumption. This DSM strategy is designed around consumers with three types of loads: sheddable loads, non-sheddable loads, and shiftable loads. To establish a bidirectional communication link between the grid and consumers by utilizing a distribution grid operator (DGO). Additionally, the uncertain behavior of wind, solar, and demand is modeled using probability distribution functions: Weibull for wind, PDF beta for solar, and Gaussian PDF for demand. To tackle this tri-objective optimization problem, this work proposes a hybrid approach that combines well-known techniques, namely, the non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization (Hybrid-NSGA-II-MOPSO). Simulation results demonstrate the effectiveness of the proposed model in optimizing the tri-objective problem while considering various constraints.

Keywords: multi-objective optimization; distribution grid operator; hybrid energy system; demand-side management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5759/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5759/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5759-:d:1784522

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-01
Handle: RePEc:gam:jeners:v:18:y:2025:i:21:p:5759-:d:1784522