EconPapers    
Economics at your fingertips  
 

Supervised and Unsupervised Machine Learning Algorithms for Forecasting the Fracture Location in Dissimilar Friction-Stir-Welded Joints

Akshansh Mishra () and Anish Dasgupta
Additional contact information
Akshansh Mishra: School of Industrial and Information Engineering, Politecnico Di Milano, 20156 Milan, Italy
Anish Dasgupta: Artificial Intelligence Analytics, Cognizant Technology Solutions, Kolkata 700106, India

Forecasting, 2022, vol. 4, issue 4, 1-11

Abstract: Artificial-intelligence-based algorithms are used in manufacturing to automate difficult activities and discover workflow or process patterns that had never been noticed before. Recent studies deal with the forecasting of the fracture location in dissimilar friction-stir-welded AA5754–C11000 alloys. Four types of supervised machine-learning-based classification algorithms i.e., decision tree, logistic classification, random forest, and AdaBoost were implemented. Additionally, in the present work, for the first time, a neurobiological-based unsupervised machine learning algorithm, i.e., self-organizing map (SOM) neural network, is implemented for determining the fracture location in dissimilar friction-stir-welded AA5754–C11000 alloys. Tool shoulder diameter (mm), tool rotational speed (RPM), and tool traverse speed (mm/min) are input parameters, while the fracture location, i.e., whether the specimen’s fracture is in the thermo-mechanically affected zone (TMAZ) of copper, or if it fractures in the TMAZ of aluminium. The results show that out of all implemented algorithms, the SOM algorithm is able to predict the fracture location with the highest accuracy of 96.92%.

Keywords: machine learning; supervised learning; unsupervised learning; fracture location; forecasting; friction stir welding (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/4/4/43/pdf (application/pdf)
https://www.mdpi.com/2571-9394/4/4/43/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:4:y:2022:i:4:p:43-797:d:929320

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:4:y:2022:i:4:p:43-797:d:929320