EconPapers    
Economics at your fingertips  
 

Person Re-Identification Based on Attention Mechanism and Context Information Fusion

Shengbo Chen, Hongchang Zhang and Zhou Lei
Additional contact information
Shengbo Chen: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Hongchang Zhang: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Zhou Lei: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Future Internet, 2021, vol. 13, issue 3, 1-15

Abstract: Person re-identification (ReID) plays a significant role in video surveillance analysis. In the real world, due to illumination, occlusion, and deformation, pedestrian features extraction is the key to person ReID. Considering the shortcomings of existing methods in pedestrian features extraction, a method based on attention mechanism and context information fusion is proposed. A lightweight attention module is introduced into ResNet50 backbone network equipped with a small number of network parameters, which enhance the significant characteristics of person and suppress irrelevant information. Aiming at the problem of person context information loss due to the over depth of the network, a context information fusion module is designed to sample the shallow feature map of pedestrians and cascade with the high-level feature map. In order to improve the robustness, the model is trained by combining the loss of margin sample mining with the loss function of cross entropy. Experiments are carried out on datasets Market1501 and DukeMTMC-reID, our method achieves rank-1 accuracy of 95.9% on the Market1501 dataset, and 90.1% on the DukeMTMC-reID dataset, outperforming the current mainstream method in case of only using global feature.

Keywords: deep learning; person re-identification; attention mechanism; context information fusion; margin sample mining (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1999-5903/13/3/72/pdf (application/pdf)
https://www.mdpi.com/1999-5903/13/3/72/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:13:y:2021:i:3:p:72-:d:516367

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:13:y:2021:i:3:p:72-:d:516367