EconPapers    
Economics at your fingertips  
 

A Latency Composition Analysis for Telerobotic Performance Insights Across Various Network Scenarios

Nick Bray, Matthew Boeding, Michael Hempel (), Hamid Sharif, Tapio Heikkilä, Markku Suomalainen and Tuomas Seppälä
Additional contact information
Nick Bray: Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Matthew Boeding: Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Michael Hempel: Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Hamid Sharif: Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Tapio Heikkilä: VTT Technical Research Centre of Finland Ltd., FI-90571 Oulu, Finland
Markku Suomalainen: VTT Technical Research Centre of Finland Ltd., FI-90571 Oulu, Finland
Tuomas Seppälä: VTT Technical Research Centre of Finland Ltd., FI-90571 Oulu, Finland

Future Internet, 2024, vol. 16, issue 12, 1-21

Abstract: Telerobotics involves the operation of robots from a distance, often using advanced communication technologies combining wireless and wired technologies and a variety of protocols. This application domain is crucial because it allows humans to interact with and control robotic systems safely and from a distance, often performing activities in hazardous or inaccessible environments. Thus, by enabling remote operations, telerobotics not only enhances safety but also expands the possibilities for medical and industrial applications. In some use cases, telerobotics bridges the gap between human skill and robotic precision, making the completion of complex tasks requiring high accuracy possible without being physically present. With the growing availability of high-speed networks around the world, especially with the advent of 5G cellular technologies, applications of telerobotics can now span a gamut of scenarios ranging from remote control in the same room to robotic control across the globe. However, there are a variety of factors that can impact the control precision of the robotic platform and user experience of the teleoperator. One such critical factor is latency, especially across large geographical areas or complex network topologies. Consequently, military telerobotics and remote operations, for example, rely on dedicated communications infrastructure for such tasks. However, this creates a barrier to entry for many other applications and domains, as the cost of dedicated infrastructure would be prohibitive. In this paper, we examine the network latency of robotic control over shared network resources in a variety of network settings, such as a local network, access-controlled networks through Wi-Fi and cellular, and a remote transatlantic connection between Finland and the United States. The aim of this study is to quantify and evaluate the constituent latency components that comprise the control feedback loop of this telerobotics experience—of a camera feed for an operator to observe the telerobotic platform’s environment in one direction and the control communications from the operator to the robot in the reverse direction. The results show stable average round-trip latency of 6.6 ms for local network connection, 58.4 ms when connecting over Wi-Fi, 115.4 ms when connecting through cellular, and 240.7 ms when connecting from Finland to the United States over a VPN access-controlled network. These findings provide a better understanding of the capabilities and performance limitations of conducting telerobotics activities over commodity networks, and lay the foundation of our future work to use these insights for optimizing the overall user experience and the responsiveness of this control loop.

Keywords: telerobotics; teleoperations; latency; analysis; network topology; VPN (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/16/12/457/pdf (application/pdf)
https://www.mdpi.com/1999-5903/16/12/457/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:16:y:2024:i:12:p:457-:d:1536765

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:457-:d:1536765