EconPapers    
Economics at your fingertips  
 

NeXtFusion: Attention-Based Camera-Radar Fusion Network for Improved Three-Dimensional Object Detection and Tracking

Priyank Kalgaonkar and Mohamed El-Sharkawy ()
Additional contact information
Priyank Kalgaonkar: Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indianapolis, IN 46202, USA
Mohamed El-Sharkawy: Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indianapolis, IN 46202, USA

Future Internet, 2024, vol. 16, issue 4, 1-23

Abstract: Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar) struggle with reduced maneuverability and unrecognizable targets. Deep Camera-Radar fusion neural networks offer a promising solution for reliable AV perception under any weather and lighting conditions. Cameras provide rich semantic information, while radars act like an X-ray vision, piercing through fog and darkness. This work proposes a novel, efficient Camera-Radar fusion network called NeXtFusion for robust AV perception with an improvement in object detection accuracy and tracking. Our proposed approach of utilizing an attention module enhances crucial feature representation for object detection while minimizing information loss from multi-modal data. Extensive experiments on the challenging nuScenes dataset demonstrate NeXtFusion’s superior performance in detecting small and distant objects compared to other methods. Notably, NeXtFusion achieves the highest mAP score (0.473) on the nuScenes validation set, outperforming competitors like OFT (35.1% improvement) and MonoDIS (9.5% improvement). Additionally, NeXtFusion demonstrates strong performance in other metrics like mATE (0.449) and mAOE (0.534), highlighting its overall effectiveness in 3D object detection. Furthermore, visualizations of nuScenes data processed by NeXtFusion further demonstrate its capability to handle diverse real-world scenarios. These results suggest that NeXtFusion is a promising deep fusion network for improving AV perception and safety for autonomous driving.

Keywords: CondenseNeXt; sensor fusion; object detection; autonomous vehicle; PyTorch (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/16/4/114/pdf (application/pdf)
https://www.mdpi.com/1999-5903/16/4/114/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:16:y:2024:i:4:p:114-:d:1366034

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:16:y:2024:i:4:p:114-:d:1366034