EconPapers    
Economics at your fingertips  
 

Edge Computing in Healthcare: Innovations, Opportunities, and Challenges

Alexandru Rancea, Ionut Anghel () and Tudor Cioara
Additional contact information
Alexandru Rancea: Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania
Ionut Anghel: Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania
Tudor Cioara: Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

Future Internet, 2024, vol. 16, issue 9, 1-28

Abstract: Edge computing promising a vision of processing data close to its generation point, reducing latency and bandwidth usage compared with traditional cloud computing architectures, has attracted significant attention lately. The integration of edge computing in modern systems takes advantage of Internet of Things (IoT) devices and can potentially improve the systems’ performance, scalability, privacy, and security with applications in different domains. In the healthcare domain, modern IoT devices can nowadays be used to gather vital parameters and information that can be fed to edge Artificial Intelligence (AI) techniques able to offer precious insights and support to healthcare professionals. However, issues regarding data privacy and security, AI optimization, and computational offloading at the edge pose challenges to the adoption of edge AI. This paper aims to explore the current state of the art of edge AI in healthcare by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and analyzing more than 70 Web of Science articles. We have defined the relevant research questions, clear inclusion and exclusion criteria, and classified the research works in three main directions: privacy and security, AI-based optimization methods, and edge offloading techniques. The findings highlight the many advantages of integrating edge computing in a wide range of healthcare use cases requiring data privacy and security, near real-time decision-making, and efficient communication links, with the potential to transform future healthcare services and eHealth applications. However, further research is needed to enforce new security-preserving methods and for better orchestrating and coordinating the load in distributed and decentralized scenarios.

Keywords: edge computing; privacy; security; edge AI; edge offloading; eHealth (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1999-5903/16/9/329/pdf (application/pdf)
https://www.mdpi.com/1999-5903/16/9/329/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:16:y:2024:i:9:p:329-:d:1474850

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-17
Handle: RePEc:gam:jftint:v:16:y:2024:i:9:p:329-:d:1474850