EconPapers    
Economics at your fingertips  
 

Keeping Pace with Criminals: An Extended Study of Designing Patrol Allocation against Adaptive Opportunistic Criminals

Chao Zhang, Shahrzad Gholami, Debarun Kar, Arunesh Sinha, Manish Jain, Ripple Goyal and Milind Tambe
Additional contact information
Chao Zhang: Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Shahrzad Gholami: Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Debarun Kar: Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Arunesh Sinha: Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Manish Jain: Armorway. Inc., Los Angeles, CA 90291, USA
Ripple Goyal: Armorway. Inc., Los Angeles, CA 90291, USA
Milind Tambe: Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA

Games, 2016, vol. 7, issue 3, 1-27

Abstract: Game theoretic approaches have recently been used to model the deterrence effect of patrol officers’ assignments on opportunistic crimes in urban areas. One major challenge in this domain is modeling the behavior of opportunistic criminals. Compared to strategic attackers (such as terrorists) who execute a well-laid out plan, opportunistic criminals are less strategic in planning attacks and more flexible in executing well-laid plans based on their knowledge of patrol officers’ assignments. In this paper, we aim to design an optimal police patrolling strategy against opportunistic criminals in urban areas. Our approach is comprised by two major parts: learning a model of the opportunistic criminal (and how he or she responds to patrols) and then planning optimal patrols against this learned model. The planning part, by using information about how criminals responds to patrols, takes into account the strategic game interaction between the police and criminals. In more detail, first, we propose two categories of models for modeling opportunistic crimes. The first category of models learns the relationship between defender strategy and crime distribution as a Markov chain. The second category of models represents the interaction of criminals and patrol officers as a Dynamic Bayesian Network (DBN) with the number of criminals as the unobserved hidden states. To this end, we: (i) apply standard algorithms, such as Expectation Maximization (EM), to learn the parameters of the DBN; (ii) modify the DBN representation that allows for a compact representation of the model, resulting in better learning accuracy and the increased speed of learning of the EM algorithm when used for the modified DBN. These modifications exploit the structure of the problem and use independence assumptions to factorize the large joint probability distributions. Next, we propose an iterative learning and planning mechanism that periodically updates the adversary model. We demonstrate the efficiency of our learning algorithms by applying them to a real dataset of criminal activity obtained from the police department of the University of Southern California (USC) situated in Los Angeles, CA, USA. We project a significant reduction in crime rate using our planning strategy as compared to the actual strategy deployed by the police department. We also demonstrate the improvement in crime prevention in simulation when we use our iterative planning and learning mechanism when compared to just learning once and planning. Finally, we introduce a web-based software for recommending patrol strategies, which is currently deployed at USC. In the near future, our learning and planning algorithm is planned to be integrated with this software. This work was done in collaboration with the police department of USC.

Keywords: security games; optimization; game theory (search for similar items in EconPapers)
JEL-codes: C C7 C70 C71 C72 C73 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2073-4336/7/3/15/pdf (application/pdf)
https://www.mdpi.com/2073-4336/7/3/15/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jgames:v:7:y:2016:i:3:p:15-:d:72861

Access Statistics for this article

Games is currently edited by Ms. Susie Huang

More articles in Games from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jgames:v:7:y:2016:i:3:p:15-:d:72861