EconPapers    
Economics at your fingertips  
 

Estimating Cyanobacteria Community Dynamics and its Relationship with Environmental Factors

Wenhuai Luo, Huirong Chen, Anping Lei, Jun Lu and Zhangli Hu
Additional contact information
Wenhuai Luo: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory of Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060, China
Huirong Chen: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory of Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060, China
Anping Lei: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory of Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060, China
Jun Lu: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory of Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060, China
Zhangli Hu: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory of Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060, China

IJERPH, 2014, vol. 11, issue 1, 1-20

Abstract: The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method . The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 10 8 cells L -1 and 1.92 × 10 8 cells L -1 in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies.

Keywords: eutrophication; cyanobacteria community composition; PCR-DGGE; freshwater lakes (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/11/1/1141/pdf (application/pdf)
https://www.mdpi.com/1660-4601/11/1/1141/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:11:y:2014:i:1:p:1141-1160:d:32251

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:11:y:2014:i:1:p:1141-1160:d:32251